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Abstract

This paper develops a method for decomposing GDP into trend and cycle exploit-
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1 Introduction

The output gap—the difference between actual and potential or trend output—is a central
measure in policy making. Both monetary and fiscal policy look at the output gap to gauge
inflationary pressures or the degree of labor market slack. Because the output gap is a
nonobservable variable, several statistical and econometric techniques have been proposed
to estimate the cyclical position of the economy. The Congressional Budget Office (CBO), for
example, offers a measure of potential output that helps forecast future federal revenue and
spending, and from which the output gap can be obtained (see Congressional Budget Office,
2014, for a recent report). Central banks also construct estimates of the output gap that
inform their monetary policy decisions (see Federal Reserve Bank of Philadelphia, 2017).
Figure 1 plots the CBO-implied and Board of Governors (BOG) of the Federal Reserve
System output gaps for the available periods.1

Figure 1: CBO-implied and BOG Output Gaps
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BOG Output Gap

Among the statistical techniques used to discriminate the permanent component from
the transitory or cyclical component is the Beveridge and Nelson (1981) decomposition of
integrated time series. Other techniques involve filters of different natures to separate the
cycle from the trend or long-run component, like the Hodrick and Prescott (1997) filter, or
variations of a band-pass filter, as in Baxter and King (1999) and Christiano and Fitzger-
ald (2003), or the Kalman filter to estimate models with unobserved components (UC), as
in Clark (1987). Another approach suggested by Stock and Watson (1989) uses multiple
macroeconomic time series to extract a common cyclical component in the spirit of dynamic
factor models.

Even though there are existing methods to estimate the cyclical position of the economy
or of a group of economies exploiting the variability of multiple variables, multiple cross-

1The BOG output gap are real-time estimates and projections of the output gap used by the staff of the
Board of Governors of the Federal Reserve System in constructing its forecast. These estimates are released
with a lag of 5 years and published by the Federal Reserve Bank of Philadelphia. Hence, the information
ends in the fourth quarter of 2011, as of the date of publication of the current draft.
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sectional units, or both, none of these methods has explored the estimation of the output
gap—defined as the difference between actual and potential output—using multiple cross-
sectional units such as geographical regions or industries. In this paper, I propose a UC
model that combines information about output and the unemployment rate from many
cross-sectional units—the U.S. states—to estimate the aggregate GDP cycle and its trend.
The proposed model exploits the panel structure of the state-level data and adds richness to
the conventional UC approach in a way that resembles the dynamic factor models but that
allows me to measure the output gap as the difference between actual and potential GDP.

The setup assumes that (the log of) each state’s real GDP is the sum of state-specific
trend and cycle components. Each of the state-specific trends, in turn, is a linear combination
of a trend common across states and an idiosyncratic trend. Likewise, each of the state’s
cycles is a linear combination of a cycle common to all of the states and an idiosyncratic
component. Lastly, an Okun’s law at the state level relates the cycle of GDP to the cycle of
the unemployment rate. Hence, information from multiple cross sections and variables can
be used to estimate the aggregate output cycle.

The model is similar to the one suggested by Stock and Watson (2016) for estimating
trend inflation, in which different inflation categories are used as the source of cross-sectional
variation. The difference is that the model in this paper incorporates a bivariate analysis
within the cross sections, including another dimension of variation that adds information
to the estimation. Additionally, in the model of this paper, the cyclical components are
assumed to have autocorrelated dynamics, while autocorrelation is absent from the setup of
Stock and Watson.

The aim of the paper is similar in spirit to that of Owyang, Rapach and Wall (2009),
who extract business cycle factors using information on income and payroll employment at
the state level. In the present paper, however, I use real GDP and unemployment rate data,
so it is possible to interpret the cyclical component of GDP as a measure of the output gap.

I estimate the model with quarterly information for the 50 states and the District of
Columbia for the period from 2005:Q1 to 2016:Q1. The results are obviously influenced and
characterized by the features of the Great Recession. In particular, the estimated cycle is
very persistent, with a hump-shaped response of the cycle to an innovation in itself.

The estimated smoothed cycle is -7.9% at the trough of the recession in the fourth quarter
of 2009, slightly lower than the CBO-implied cycle, which reached about -7.3% two quarters
before. The model’s estimates imply that the trend of GDP declined about 1.9% between
the end of 2008 and the beginning of 2009, whereas the CBO estimate lowers its slope much
more slowly. At the end of the sample, the estimated output gap is about 0.6% and trend
output would be growing at an average annual pace of 3⁄4 percent, compared to 31⁄4 percent
before the recession.

The proposed model also allows one to examine the cyclical features of the state economies
during the recession and at the end of the sample. For example, the states that were hit
the hardest by the recession were those in the rust belt, as well as Arizona, California,
Nevada, and Florida. At the end of the sample, states like West Virginia and Wyoming were
experiencing negative output gaps, probably driven by low commodity prices.

I find that adding cross-sectional information reduces the uncertainty around the estima-
tor of the cycle compared with a model that uses aggregate data only. I also find that the
model with many cross sections outperforms two competing models in predicting the growth
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rate of real GDP. The first is a simple AR(1) process of real GDP growth. The second is a
(bivariate) UC model that uses aggregate information on real GDP and the unemployment
rate. The reduced uncertainty and the better forecasting ability shed light on the advantage
of using cross-sectional information to obtain estimates of the cycle with a UC model.

The paper is structured as follows: Section 2 reviews the existing literature. In Section 3,
I set up the UC model with many cross sections. Section 4 presents the estimation technique.
Section 5 describes the data at the state level and shows the features of the Great Recession.
In Section 6, I present and discuss the results of the estimation. Section 7 evaluates the
performance of the model. Section 8 concludes.

2 Contacts with the Literature

This work is related to the literature on UC models of trend-cycle decompositions. It
also relates to the literature on common components estimation with dynamic factor models
and, indirectly, to the literature on extracting common stochastic trends with panel data.

Introducing multidimensional variability into the UC model’s setup can be done in three
ways. One is to incorporate many variables belonging to one unit of interest, where these
variables provide information to extract common trends and/or cycles. Another possibility is
to incorporate many units of interest for which the same variable is used to extract common
trends and/or cycles. The third possibility considers a combination of many units of interest
and many variables to extract common trends and/or cycles. In this paper, I adopt the third
possibility.

2.1 Many Variables and a Single Economic Unit

With respect to the first approach, in which many variables of the same unit of interest
provide information about a common cycle, Crone and Clayton-Matthews (2005) describe
how to use mixed frequency data from the U.S. states to estimate state-level monthly indexes
of economic activity for each state. The setup is the UC model discussed in Stock and Watson
(1988, 1989). Observable variables for each state are the first difference of the following:
(the log of) nonagricultural employment, the unemployment rate, (the log of) average hours
worked in manufacturing, and (the log of) real wage and salary disbursements. A scalar
latent stationary series is common to the state-level observable variables and is interpreted
as the state’s cycle. The observable series load on the state’s cycle with leads and/or lags.
In this analysis, only the cross-sectional structure of the many variables is exploited, not the
variability along the state-level dimension.

Basistha and Startz (2008) and Fleischman and Roberts (2011) also use several variables,
but at the aggregate level, to estimate the U.S. NAIRU in the first case and to estimate the
U.S. potential output and its associated business cycle in the second. In both cases, the
authors emphasize the advantages of using a multivariate approach in the estimation of
unobserved components models. Such advantages include gaining precision of the estimates
and the ability to assess the trade-offs among competing signals in a coherent way.
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2.2 A Single Variable and Many Economic Units

Within the second approach —many units of interest and one variable—Del Negro and
Otrok (2008) extend a factor model to incorporate time-varying factor loadings and stochastic
volatility in order to extract the international business cycle using a panel of 19 countries.
The model is estimated with Bayesian methods and allows one to obtain the common and
country-specific cycles for the growth rates of GDP, but it does not consider the common
GDP trends.

Mitra and Sinclair (2012) also use many cross sections and one variable. They propose a
multivariate UC model to simultaneously decompose real GDP for each of the G-7 countries
into its respective trend and cycle components. The setup considers real GDP as the only
observable variable and assumes that each country’s GDP is driven by specific trend and cycle
components. The setup allows for possible correlations between any of the contemporaneous
shocks to the unobserved (trend and cycle) components.

Stock and Watson (2016) propose a multivariate model to estimate trend inflation. They
use 17 components of the U.S. personal consumption expenditure inflation to construct
an index akin to core inflation, but with time-varying distributed lags of weights, where
each sectoral weight depends on the time-varying volatility and persistence of the sectoral
inflation series, and on the co-movement among sectors. The modeling framework is a
dynamic factor model with time-varying coefficients and stochastic volatility estimated with
Bayesian methods. This work is the most similar to the present paper, although it only
considers one variable in the analysis—the inflation rate—while this paper considers two,
GDP and the unemployment rate.

2.3 Many Variables and Many Economic Units

Regarding the third approach—many variables and many cross sections—Gregory, Head
and Raynauld (1997) use a dynamic factor model estimated with classical methods to de-
compose aggregate output, consumption, and investment for the G-7 countries into factors
that are common across all countries and aggregates, common across aggregates within a
country, and specific to each individual aggregate. Data have to be de-trended to use the
dynamic factor models approach because the underlying factors are assumed to be station-
ary. Similarly, Kose, Otrok and Whiteman (2003) estimate a dynamic latent factor model,
but with Bayesian methods, to extract common components from macroeconomic aggregates
(output, consumption, and investment) in a 60-country sample covering seven regions of the
world. They allow factors common to the world, the regions, and the countries. Here, too,
data are de-trended.

For the United States, Owyang, Rapach and Wall (2009) use state-level income and
payroll employment data to estimate a dynamic factor model of the 48 contiguous states
and the District of Columbia in order to extract business cycle factors. The estimation of
the model identifies three common factors underlying the fluctuations in state-level income
and employment growth, with the first common factor resembling aggregate fluctuations
in real activity at the national level. The factors explain a large proportion of the total
variability in state-level variables, although there is still a substantial amount of cross-state
heterogeneity.
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3 Unobserved Components Models for Trend-cycle De-

composition of GDP

There is a relatively long history of formulations of UC models to decompose GDP into
trend and cycle components. Clark (1987) proposes a univariate estimation in which the log
of aggregate real GDP is the sum of orthogonal trend and cycle components and where the
cycle follows a stationary AR(2) process. Clark (1989) adds the aggregate unemployment rate
as an additional variable to inform the trend-cycle decomposition and sets up the following
model:

yt = τ yt + ct (1)

ut = τut + θ1ct + θ2ct−1 (2)

τ yt = µ+ τ yt−1 + ηyt (3)

τut = τut−1 + ηut , (4)

ct = φ1ct−1 + φ2ct−2 + εt, (5)

with 
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and Ft−1 is the sigma-field containing the information up to period t− 1.
In equations (1)-(6), yt is the log of aggregate real GDP, τ yt is its unobserved trend,

assumed to be a random walk with mean growth rate µ, and ct is the unobserved stationary
cycle that follows an AR(2) process with autoregressive coefficients φ1 and φ2. Additionally,
ut is the aggregate unemployment rate and τut is its unobserved trend, which follows a random
walk process, whereas the cyclical component is given by a linear combination of current and
lagged values of the cycle of GDP with coefficients θ1 and θ2, in a way resembling Okun’s
law. Finally, εt is a disturbance to the cycle, while ηyt and ηut are trend disturbances, all of
them independent of each other.

Estimation of this model has been typically made with classical methods using the
Kalman filter (see Clark, 1989; Gonzalez-Astudillo and Roberts, 2016, for example). Also,
the inflation rate can be introduced in a way resembling a Phillips curve to inform the
estimation of the cycle (see Basistha and Nelson, 2007, for example).

3.1 The Unobserved Components Model With Many Cross Sec-

tions

In this paper, I introduce a cross-sectional dimension to the UC model in equations (1)-
(6). Specifically, the cross-sectional information comes from state-level data. The model
specifies (the log of) each state’s real GDP, yit, and unemployment rate, uit, for states
i = 1, 2, . . . , n in period t = 1, 2, . . . , T as follows:

yit = τ yit + cit (7)
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uit = τuit + θ1icit + θ2ici,t−1 (8)

τ yit = δyi τ
y
t + ξyit (9)

τuit = δui τ
u
t + ξuit (10)

ξyit = µi + ξyi,t−1 + ηyit (11)

ξuit = ξui,t−1 + ηuit (12)

τ yt = µ+ τ yt−1 + ηyt (13)

τut = τut−1 + ηut (14)

cit = αict + υit (15)

υit = ρiυi,t−1 + ζit (16)

ct = φ1ct−1 + φ2ct−2 + εt, (17)

where the error terms are assumed to be white noise, uncorrelated with each other and
normally distributed, as follows:
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, (18)

and Ft−1 is the sigma-field containing the information up to period t − 1. Appendix A
presents the state-space model in matrix form.

In the model characterized by equations (7)-(18), each state’s GDP and unemployment
rate are the sum of GDP and unemployment rate trends and cycles. The state’s GDP and
unemployment rate trends, τ yit and τuit, respectively, are the sum of two components. The first
component is a function of the common trends, τ yt or τut , with loadings δyi or δui , respectively.
The common trends, in turn, are unit-root processes with drift µ in the case of GDP and
without drift in the case of the unemployment rate. The second component is a state-specific
trend, ξyit or ξ

u
it, which are unit-root processes with drift µi in the case of GDP and without

drift in the case of the unemployment rate.
The state-specific GDP cycle is cit, whereas in the case of the unemployment rate, the

cycle is a linear combination of the cycle of GDP with coefficients θ1i and θ2i in a way
resembling an Okun’s law, as in Clark (1989). Each state’s GDP cycle loads on the common
cycle, ct, with coefficient αi and is affected by a state-specific disturbance, υit, which in turn
follows a stationary AR(1) process with persistence coefficient ρi. Lastly, the common cycle
follows a stationary AR(2) process with persistence coefficients φ1 and φ2.

The model outlined in equations (7)-(18) differs from the existing UC models for GDP
trend-cycle decompositions in the literature because it incorporates cross-sectional informa-
tion in the analysis. The common trend and cycle of aggregate GDP are informed by the
cross-sectional structure of the data. Although the idiosyncratic disturbances are uncor-
related across states, the common trend and cycle allow for correlated movements in the
state-level GDPs and unemployment rates. The model differs from the conventional dy-
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namic factor models approach because it explicitly allows for trends, which are generally
removed in the factor analysis from each of the variables to deal with stationary processes.
The exception to this de-trending treatment is the setup in Stock and Watson (2016). Their
model is similar to the model presented here, except that I do not allow for stochastic volatil-
ities or time-varying loading coefficients, in particular because of the short longitude of the
data and the large cross-section. What is allowed in the model considered here, however,
is the possibility that the cyclical components, ct and υit, follow autocorrelated dynamics,
whereas Stock and Watson assume that they are martingale processes. Additionally, the
model presented here incorporates two variables for each cross section, namely real GDP
and the unemployment rate, to inform the trend and cycle of GDP, whereas in Stock and
Watson the only variable of interest was inflation to inform its own trend.

4 Estimation Strategy

This section lays out the identification restrictions and the Bayesian estimation strategy
to obtain the parameters that characterize the model in equations (7)-(18), as well as the
common and state-specific trends and cycles of output.

4.1 Identification

Regarding the identification of the parameters and the unobserved components, the vari-
ance of the error term of the common cycle, σ2

ε , is set to one to be able to identify the scale of
the loading coefficients, αi. The same is done with the variances of the error terms of the com-
mon trends, σ2

ηy and σ2
ηu , in order to identify the loading coefficients δyi and δui , respectively.

The drift of the common output trend, µ, is set to zero to allow the unrestricted estimation
of the state-specific drifts, µi. To avoid state-level GDP trends with negative slopes, the
loading coefficients, δyi , and the state-specific drifts, µi, are restricted to be positive for all
the states. The variances of the idiosyncratic components of the cycle, σ2

ζi
, are identified

from the covariance and autocovariance structure, including the cross autocovariances, of
the state-level GDPs and unemployment rates.

Because the common cycle, ct, is identified only up to its sign, I restrict αi ≥ 0 for
i = CALIFORNIA. I also restrict the loading coefficients of each state’s unemployment rate
on the common unemployment trend, δui , to be nonnegative for all the states in order to
prevent unemployment rate trends at the state level that may move opposite to the common
trend permanently.

4.2 Bayesian Estimation

The estimation of the UC model with many cross sections in equations (7)-(18) is carried
out with Bayesian methods and involves 512 coefficients when the identification restrictions
are imposed. I set up the following Metropolis-within-Gibbs procedure.2 Let zit be a 2 × 1
vector containing the rate of real GDP growth and the first difference of the unemployment
rate for i = 1, . . . , n and t = 1, . . . , T . Also, let xit be a vector including the latent variables

2Appendix B describes in detail the sampling procedure.
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for i = 1, . . . , n and t = 1, . . . , T . Additionally, denote as Θmi the parameters of the state-
space model’s measurement equation for state i and Θsi the parameters of the state-space

model’s transition equation for state i. For Θm =
n⋃

i=1

Θmi and Θs =
n⋃

i=1

Θsi, the steps are

the following:

1. Start with initial values for the model’s parameters, Θ = Θm

⋃
Θs.

2. Conditional on the data, ZT = [z̃1, z̃2, . . . , z̃T ], and Θ, generate a draw of the latent
variables, XT = [x̃1, x̃2, . . . , x̃T ], using the Durbin and Koopman (2002) simulation
smoother. Here, z̃t = [z1t, z2t, . . . , znt] and x̃t = [x1t,x2t, . . . ,xnt].

3. Conditional on XT ,ZT , and Θm, generate a draw of Θs using the Normal-Inverse-
Gamma posterior distribution and the Metropolis-Hastings algorithm.

4. Conditional on XT ,ZT , and Θs, generate a draw of Θm using the Metropolis-Hastings
algorithm imposing the identification restrictions.

5. Return to step 2.

5 Data

I consider real GDP in chained 2009 dollars for the 50 states and the District of Columbia
at a quarterly frequency from the first quarter of 2005 to the first quarter of 2016. The
information is obtained from the U.S. Bureau of Economic Analysis Regional Economic
Accounts. The unemployment rate data at the state level are obtained from the Local Area
Unemployment Statistics of the U.S. Bureau of Labor Statistics.

Because the aim of the paper is to obtain and characterize the national business cycle
from state-level data, this section briefly describes the characteristics of the state economies.
I pay special attention to the features of the state economies during the Great Recession.
I show the industry contribution to each state’s GDP, the states that were most strongly
affected by the recession, and the industries that have contributed the most to the growth
of GDP in each state between 2005 and 2015.

5.1 Economic Activities by State

This section describes the most relevant industries by state. Using annual information
by industries at the state level from 2005 to 2015, Figure 2 presents two maps of the United
States with the two most important industries in terms of GDP participation, on average,
for each state.3

The industries that contribute the most to the states GDPs, using the North American
Industry Classification System, are the following: (i) Manufacturing, (ii) Real Estate and
Rental and Leasing, (iii) Mining, (iv) Professional, Scientific, and Technical services, (v)
Health Care and Social Assistance, (vi) Finance and Insurance, (vii) Accommodation and

3This analysis excludes the importance of the government sector in each state, which can be large for
some of the state economies.
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Figure 2: Most Important Industries by State 2005-2015
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Figure 3: States with Negative Average Real GDP Annual Growth in 2007-
2009
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Food Services, and (viii) Transportation and Warehousing. By a large margin, the two most
important industries for the vast majority of states are manufacturing and real estate. How-
ever, some other states have other sectors that contribute importantly to their GDP. For
example, mining is an important industry in Alaska, New Mexico, North Dakota, Oklahoma,
Texas, West Virginia, and Wyoming. Colorado, the District of Columbia, Maryland, Mas-
sachusetts, and Virginia have an important contribution from the professional services sector.
Financial services contribute importantly to the GDP of Connecticut, Delaware, Iowa, New
York and South Dakota. Health-related services are an important sector in Florida, Maine,
Montana, and Rhode Island, while Hawaii and Nevada both have large contributions from
accommodation and food services.

5.2 States Most Strongly Affected by the Great Recession

The states that were most strongly affected by the Great Recession in terms of real GDP
growth rates in the 2007–09 period appear in Figure 3. The states that experienced the
lowest average growth rates of real GDP were Florida, Michigan, and Nevada, with rates
lower than -3%. Following this group are Arizona and Ohio, with growth rates between -3%
and -2%. Having real estate as the first or the second most important economic activity was
most likely associated with GDP growth declines across states. This situation is obvious,
given the nature of the Great Recession. By contrast, having mining as one of the two
most important economic activities—like in Alaska, New Mexico, North Dakota, Oklahoma,
Texas, West Virginia, and Wyoming—was associated with positive average growth rates in
that period. All told, 30 of the 48 states experienced zero or negative average growth rates
in the 2007–09 period.
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Figure 4: Most Important Contributing Industries to GDP Growth 2005-2015
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5.3 Most Important Contributing Industries to the States’ Real

GDP Growth

Now that we have seen the states that were affected the most by the Great Recession,
Figure 4 presents the real GDP growth rates between 2005 and 2015 by state and the
industries that contributed the most to the growth of real GDP in each state. The five
states with the highest growth rates are North Dakota (91%), Texas (44%), Oklahoma (32%),
Oregon (31%), and Utah (28%). The five states with the lowest growth rates are Nevada (-
6%), Louisiana (-3%), Connecticut (-3%), Michigan (-2%), and Rhode Island (-1%). Mining
has been the most important contributor to growth in the three fastest growing states. In
Oregon, manufacturing contributed the most, while the real estate sector has affected growth
the most in Utah. In the majority of states, the construction and manufacturing industries
have been the biggest drags with respect to GDP growth. In fact, construction is the sector
with the largest negative contribution to the growth of real GDP in Nevada, Michigan, and
Rhode Island, whereas the manufacturing sector has the largest negative contribution in
Louisiana and Connecticut.

In the next section, I present the results of the estimation and link these results to the
narrative of this section.

6 Estimation Results

This section presents the results of the estimation of the UC model of equations (7)-(18).
It describes the results of the estimation focusing on the aggregate GDP trend and cycle. It
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Table 1: Prior Distributions of the Parameters - State Level Data

Parameter Distribution Mean Standard Deviation
φ1 Truncated Normal 1.5 1
φ2 Truncated Normal -0.6 1
µi Truncated Normal 0.8 0.8
αi Normal 1 1
δyi Truncated Normal 1 1
δui Truncated Normal 1 1
θ1i Normal -0.25 0.25
θ2i Normal -0.25 0.25
ρi Truncated Normal 0 1

σ2
ηyi

Inverse Gamma — —

σ2
ηui

Inverse Gamma — —

σ2
ζi

Inverse Gamma — —

also discusses the features of each state’s estimated trend and cycle and the magnitudes of
the Okun’s law coefficients.

6.1 Prior Distributions

The prior distributions of the parameters of the UC model with many cross sections
appear in Table 1.

The prior means of the parameters of the common cycle, φ1 and φ2, are similar to
those found in the literature of trend-cycle decompositions of output. For example, Morley,
Nelson and Zivot (2003) find that the estimation of an unobserved components model with
aggregate data on real GDP in absence of correlation between trend and cycle innovations
yields estimated coefficients φ̂1 = 1.53 and φ̂2 = −0.61. Also with aggregate data, but
including the unemployment rate along with real GDP, Gonzalez-Astudillo and Roberts
(2016) find estimates around 1.6 for φ1 and -0.65 for φ2 either with or without correlation
between output innovations. The joint prior distribution of these two parameters is truncated
to satisfy the weak stationarity feature of the common cycle. The mean growth rate of
each state’s GDP has a truncated normal prior distribution with mean 0.8, which yields
an annualized growth rate of real GDP around 3%, roughly the historical average. The
distributions of the parameters that load on the common cycle, αi, are normal with means
and standard deviations equal to one.4 The coefficients that load on the common trends, δyi ,
and δui , have truncated normal distributions with means and standard deviations equal to
one. The Okun’s law coefficients, θ1i and θ2i, are normally distributed with prior means equal
to -0.25 each, such that the long-run Okun’s law coefficient for each state is centered at -0.5
under the prior distribution. This is the usual Okun’s law coefficient used in the literature
(see Abel, Bernanke and Croushore, 2013). The prior distribution of the parameter of the
idiosyncratic cycle, ρi, is a truncated standard normal. In general, the standard deviations

4In the case of California, the prior distribution of αi is truncated normal with mean and standard
deviation equal to one.
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Table 2: Parameter Estimates of the Common Trend and Cycle

Parameter Posterior Mean 90% Confidence Set

φ1 1.97 [1.95, 1.98]

φ2 -0.98 [-0.99, -0.96]

σε 1 —

σηy 1 —

σηu 1 —

of the parameters imply that the distributions are neither too tight nor too narrow.
In the current setup, because of the lack of previous estimates of these coefficients in the

literature, it may be difficult to characterize the prior distributions of the variances of the
idiosyncratic components of the trend and the cycle, σ2

ηyi
, σ2

ηui
, and σ2

ζi
. Hence, the estimation

of these parameters relies exclusively on the likelihood function.

6.2 Estimate of the U.S. Output Gap

The estimation produced 60,000 draws from the posterior distribution. The last 30,000
draws were kept. The acceptance rate for the coefficients drawn with the Metropolis-Hastings
algorithm was between 30% and 40%, on average, across states. Results of the estimation for
the parameters that characterize the common cycle appear in Table 2. The posterior mean
of the parameters φ1 and φ2 imply a very persistent hump-shaped response of the cycle to
a shock, in line with the findings of Fleischman and Roberts (2011). Under the posterior
distribution of these coefficients, the lag polynomial has complex roots that imply a 90%
confidence set for the period of the cycle between approximately 131⁄2 and 19 years, with a
mean of approximately 153⁄4 years.

Using the derivation detailed in Appendix C to obtain the cycle of aggregate GDP from
the estimation with state-level data, I obtain the following:

Aggregate GDP cyclet ≈ ᾱct + ῡt, (19)

with ᾱ =
∑n

i=1wiαi and ῡt =
∑n

i=1wiυit, where the smoothed estimates of ct|T and υit|T are
used to obtain the estimated cycle and wi is the average contribution of state i’s GDP to
aggregate GDP in the sample period.

The smoothed estimate of the cycle of aggregate GDP for the United States, along with
the implied cycle from the CBO estimate of potential output, appears in Figure 5. After
reaching a peak of about 0.14% in the fourth quarter of 2005, the estimated cycle starts
to decline and becomes negative in the second quarter of 2006. The trough occurs in the
fourth quarter of 2009, when the cycle reaches about -7.9%. The estimated cycle differs with
respect to the CBO-implied cycle in that during the recession the latter reached -7.3% in the
second quarter of 2009, about 1⁄2 percentage point higher than and two quarters before the
former. However, the trough of the estimated cycle coincides with that of the BOG estimate,
which reached -7.6% in the fourth quarter of 2009.

The estimations results regarding the output gap at the trough of the recessions can

13



Figure 5: Smoothed Estimate of the Aggregate GDP Cycle from State-level
Data
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Source: Congressional Budget Office (CBO) and author’s calculations.

also illustrate those states that experienced the largest deviations from trend. Figure 6
shows these results. In concordance with the results on the average real GDP annual growth
rates in Figure 3, Nevada, Michigan, and Florida are the most affected states. Arizona,
California, Delaware, Rhode Island, and Ohio also have negative output gaps larger than
10%. Eleven states—including, for example, Illinois and Indiana—experienced output gaps
between 7% and 10%. Eighteen states—including, for example, Massachusetts and Texas—
reached output gaps between -5% and -7%. The least affected states that still had negative
output gaps were the District of Columbia and states like South Dakota, West Virginia, and
Louisiana. Finally, there is a group of states that, according to the estimation, did not go
through episodes of negative output gaps during the 2006:Q2-2010:Q1 period. These states
are Alaska, New Mexico, Oregon, and Wyoming, three of which are states where the oil and
gas sectors, as well as mining, are important contributors.

Figure 5 also shows that the aggregate GDP cycle has almost constantly increased after
the recession to end at about 0.6% in the first quarter of 2016, well above the CBO-implied
estimate of -2.1%. In any case, the 68% confidence set of the estimated cycle contains zero,
indicating that it is not unreasonable to predict that the output gap is closed by the first
quarter of 2016. At the state level, the results in Figure 7 classify the states according to
the estimated output gap at the end of the sample period.

Most of the states lie in the region of a positive estimated output gap. The exceptions
are Alaska, Louisiana, New Mexico, Oregon, West Virginia, and Wyoming, several of which
have relevant oil, gas, and mining industries. In fact, there are reports that West Virginia
and Wyoming have recently been suffering from a recession that is most likely due to lower
commodity prices (see Matthews, 2016). On the other side of the spectrum, with the largest
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Figure 6: Largest Negative Output Gaps between 2006:Q2 and 2010:Q1
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Figure 7: State Output Gaps in 2016:Q1
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Figure 8: Estimate of the aggregate GDP trend
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Source: Congressional Budget Office (CBO), Federal Reserve Economic Data (FRED), and author’s calculations

positive output gaps, are California, Colorado, Florida, Nevada, and Michigan. It might be
counterintuitive that the states with the most-negative output gaps during the recession,
as illustrated in Figure 6, are also the states with the highest output gaps at the end of
the sample. One possible explanation is that the GDP trends of these states have been
significantly affected by the recession, hence the level of output necessary to achieve a positive
output gap is relatively lower than for other states that did not see their trends adjusted
downward.

As stated previously, there are differences between the estimate of the aggregate output
gap and the CBOs, both in terms of magnitude and timing. This situation has implications
for the estimate of the trend. Specifically, between the third quarter of 2008—when the
estimated trend peaks during the recession—and the first quarter of 2009, the estimated
decline of the aggregate trend in the model used in this paper is about 1.9%. Figure 8
shows the sudden drop in the estimated trend of GDP during the recession, which occurs
only gradually in the CBO counterpart. The figure also shows that the estimated trend
has experienced a marked deceleration in recent years compared with the years before the
recession. In fact, between 2006 and 2008 the trend is estimated to have grown at an average
annual rate of about 31⁄4 percent, whereas the average growth rate has been about 3⁄4 percent
since 2012. Additionally, there is a substantial difference compared with the growth rate of
the CBO potential in recent years. The CBO estimates that potential has been growing at
an annual rate of about 11⁄2 percent since 2012, twice the estimate in this paper.

At the state level, Figure 9 shows selected states whose trends have increased significantly
above or below the estimated aggregate trend. The first panel illustrates how the states that
benefited the most from high commodity prices (oil, in particular)—North Dakota, Texas,
Utah, and Oklahoma—significantly increased their trend output during the past decade.
The middle panel shows the states in the rust belt that suffered during the Great Recession.
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Michigan was not only affected in terms of its cyclical situation, but its trend GDP has also
declined after the recession. As mentioned previously, this decline in the trend slope for
Michigan can be associated with its positive estimated output gap at the end of the sample.
The other states—namely, Indiana, Kentucky, Illinois, and Ohio—have recovered, but at
a slower pace than the aggregate. Finally, the third panel shows states that are unusual
in their characteristics such that they cannot be grouped with the states in the first two
panels. Oregon, for example, has seen its manufacturing industry grow significantly in the
past decade. The important increase in trend output for Oregon and a deceleration of output
toward the end of the sample can explain the negative output gap discussed previously for
this state. South Dakota’s trend may have been driven by industries related mainly to
agriculture and financial services. States whose trend output growth has been among the
lowest of the country are Louisiana, Maine, and Nevada, according to the model used in this
paper.

6.3 State Trend Intercepts and Cycle Loading Coefficients

To illustrate the features of the state economies, in Figure 10 I present the results related
to the average output trend growth rates, µi, and the common cycle loadings, αi. Figure
10a shows that the states that experienced higher average growth rates of trend output are
North and South Dakota, followed by Alaska, Nebraska, Oregon, Utah, Texas, Washington,
and Wyoming. In most of these states, the mining sector strongly influences output growth,
as Figure 4 shows. Some of these states with the highest average output trend growth rates
also appear in Figure 9 as the states with the fastest growing trends. Those states that
do not appear in the state trends figure despite having high estimated values of µi may
have experienced negative idiosyncratic trend shocks. On the other side of the spectrum,
with average trend annualized growth rates lower than 0.4%, are Maine and Michigan. As
indicated in Section 5.3, the construction industry was the most negative contributor to
growth in Michigan, and the same is true for Maine.

With regard to the loading coefficients on the common cycle, Figure 10b shows the
estimation results for the states ordered by quartiles. Among the states with the highest
loadings are Arizona, Florida, Michigan, and Nevada, which are some of the states that
experienced the most negative output gaps during the recession years. One can interpret
this result as these states being the most sensitive to the national business cycle conditions
during the sample period. With respect to the states with the lowest loadings, it turns out
that some of them actually have negative posterior mean estimates. This set includes Alaska,
Louisiana, New Mexico, Oregon, and Wyoming, although in all of the cases, the confidence
sets of the loading coefficients include zero. These states seem to be among the less sensitive
to the national business cycle conditions.

6.4 Variance Decomposition of States’ Cycles

Another way to look at the sensitivity of the states economies cycles to the common cycle
is to compute the variance decomposition of the state-specific cycle. From equation (16),
the cycle for each state i = 1, 2, . . . , n is specified as cit = αict + υit. Hence, one can obtain
the fraction of the variance of the cycle that is due to the common cycle, α2

i var(ct)/ var(cit),
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Figure 9: Estimate of the GDP Trend for Selected States
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Figure 10: Intercept and Loading Coefficients Estimates
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Figure 11: Variance Decomposition of the State’s Cycles

Note: x = 100 ×
α
2
i

var(ct)

var(cit)
is the proportion of the variance of the state’s cycle that is explained by the variance

of the common cycle.

and the fraction that corresponds to the idiosyncratic component, var(υit)/ var(cit). Figure
11 shows the percent of the variance of the cycle of each of the states that is due to the
common cycle.

Connecticut, California, Georgia, and Nevada are among the states with cycle variability
that is explained the most by the variance of the common cycle, whereas Louisiana, New
Mexico, South Dakota, and West Virginia have the smallest variation of their cycle attributed
to the common cycle. In other words, most of the variability of the cycle in these states comes
primarily from features inherent to those states. For example, New Mexico and West Virginia
are states where mining can have very particular cyclical effects which are not necessarily
related to the aggregate economic cycle.

6.5 Variance Decomposition of Aggregate GDP

As described in Section 3.1, the common trend and cycle components imply co-movement
between the state economies that, in turn, influence the variability of the aggregate GDP.
Hence, one can compute the variance decomposition of aggregate GDP growth, as follows:5

var(∆% Aggregate GDP) = var(∆ Aggregate GDP trend) + var(∆ Aggregate GDP cycle).

5The full derivation appears in Appendix D.
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Figure 12: Okun’s Law Coefficients (θ1i + θ2i)
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Therefore, the percent of the variance of GDP growth that is due to the variance of the
change in the cycle is given by the following:

var(∆ Aggregate GDP cycle)

var(∆ Aggregate GDP trend) + var(∆ Aggregate GDP cycle)
= 47%.

The contribution of the variability of the cycle to the variability of GDP growth of 47%
is lower than estimates obtained with longer samples. For example, Gonzalez-Astudillo and
Roberts (2016) find that the contribution is around 60% or 65%, depending on the assump-
tion about the correlation between trend and cycle components. One possible explanation
for the lower contribution obtained in this paper is that the sample exclusively contains the
Great Recession, which the results indicate affected the trend of GDP more strongly than
what estimations with longer samples would obtain.

6.6 State Okun’s Law Coefficients

Another dimension along which the results can be analyzed are the cyclical features of
the labor markets, in particular the sensitivity of the unemployment gap to the output gap in
each state. This feature can be measured by the sum of the Okuns law coefficients, θ1i + θ1i.
The higher this sum in absolute value, the more responsive is the unemployment rate to
the cyclical fluctuations of output. Figure 12 presents the results grouped by values of the
posterior mean estimates.

The states with more-cyclical labor markets would be California, Colorado, Missouri,
Nevada, New Jersey, and Virginia. The states with less cyclical labor markets would be
Alaska, New Hampshire, North Dakota, and South Dakota. Three of these states are mining
states, a sector that does not require significant labor force inputs. The average of the
posterior mean of the Okuns law coefficients across states is about -0.2, which is smaller in
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Table 3: Prior Distributions of the Parameters - Aggregate Data

Parameter Distribution Mean Standard Deviation
φ1 Truncated Normal 1.5 1
φ2 Truncated Normal -0.6 1
µ Truncated Normal 0.8 0.8
θ1 Normal -0.25 0.25
θ2 Normal -0.25 0.25
σ2
ε Inverse Gamma — —

σ2
ηy Inverse Gamma — —

σ2
ηu Inverse Gamma — —

absolute value than the usual coefficient of -0.5.

7 Evaluation of Results

This section evaluates the performance of the proposed model in comparison to a UC
model of aggregate real GDP and unemployment rate. The aim is to offer insights about the
gain of including cross-sectional information to estimate the cycle of output. First, I present
the results of the estimation of such an aggregate model and compare them to the results of
the model with state-level data, in particular with regard to the efficiency of the estimator
of the GDP cycle. Then, I evaluate the forecast performance of the UC model with many
cross sections proposed in this paper. Finally, I discuss extensions to the model and the
limitations of the sample size.

7.1 Unobserved Components Model with Aggregate Data

In this section, I compare the results obtained from the estimation of the UC model with
many cross sections to the results obtained from the estimation of the model with aggregate
data given in equations (1)-(6) over the same sample period.

The prior distributions of the coefficients appear in Table 3 and are similar to those in
the specification with data at the state level; in this case, however, it is possible to estimate
the variances of the aggregate cycle and trend shocks, σ2

ε , σ
2
ηy , and σ2

ηu . I use quarterly GDP
and unemployment rate data from the St. Louis FRED database. Results appear in Table
4.

The mean annual growth rate of real GDP is estimated to be about 1.4%, very similar
to the estimate with state-level data obtained from weight-averaging the estimated state-
level mean growth rates. With aggregate data, the estimation yields complex roots in the
lag polynomial 88% of the times, and the 90% confidence set for the period of the cycle is
between approximately 53⁄4 and 261⁄4 years, a set substantially wider than with state-level
data. The estimated mean of the period is approximately 121⁄2 years, 31⁄4 years shorter than
with state-level data. Finally, the variance decomposition of real GDP growth indicates
that about 46% of its variation is due to variations in the cycle, 1% below the result with
state-level data.
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Table 4: Parameter Estimates with Aggregate GDP and Unemployment Rate
Data

Parameter Posterior Mean 90% Confidence Set

µ 0.34 [0.18,0.50]

φ1 1.81 [1.63,1.95]

φ2 -0.85 [-0.98,-0.67]

σε 0.27 [0.15,0.40]

σηy 0.56 [0.47,0.67]

θ1 0.07 [-0.27,0.48]

θ2 -0.70 [-1.21,-0.35]

σηu 0.20 [0.19,0.30]

With respect to the Okun’s law coefficients, the long-run sensitivity of the unemployment
gap to the output gap is about -0.64. Owyang, Vermann and Sekhposyan (2013) investigate
the Okun’s law coefficients across states, although using the growth rates version of the law,
and find that there can be discrepancies between the estimates with state-level data (like
those in Figure 12) and the estimate obtained from aggregate data.

The smoothed cycle of this estimation along with the CBO-implied output gap appear in
Figure 13. The trough of the cycle reaches about -5.1% in the second quarter of 2009; this
value is about 23⁄4 percentage points higher than the estimate with state-level data. Also, the
estimated cycle recovers faster than the estimate with state-level data, reaching about 1.2%
in the first quarter of 2016, compared with 0.6% with state-level data. These results are
consistent with an estimated output trend growing, at the end of the sample, at an average
annual rate of a little above 1 percent with aggregate data, compared with 3⁄4 percent with
state-level data.

Stock and Watson (2016) argue that the width of the confidence set of the cycle, in this
case, reflects two sources of uncertainty: the signal extraction uncertainty conditional on
the values of the parameters of the model and the parameter uncertainty. The model with
state-level data contains more information than the model with aggregate data, and hence
the signal extraction uncertainty is smaller in the former. But the model with aggregate
data contains many fewer parameters than the model with state-level data, which implies
greater parameter uncertainty in the latter. Therefore, there is no a priori ranking of the
width of the posterior intervals between the two models.

However, the results clearly indicate that the incorporation of many cross sections reduces
greatly the signal extraction uncertainty despite the large number of parameters that could
increase the parameter uncertainty. When one compares the width of the 68% confidence
sets between Figure 5, which is the estimate of the cycle with state-level data, and Figure
13, with aggregate data, it is evident the much narrower confidence set is in the case with
many cross sections.
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Figure 13: Smoothed Estimate of the GDP Cycle from Aggregate Data
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Source: Congressional Budget Office (CBO) and author’s calculations.

7.2 Forecasting Performance

In this section, I perform an out-of-sample forecast evaluation of the proposed model
against two models of aggregate real GDP. The first model is a simple AR(1) process for
the growth rate of real GDP. The second is the UC model of aggregate real GDP and the
unemployment rate, whose estimation is described in the previous section.

Given the short span of the sample, the out-of-sample forecast evaluation starts with
the sample covering the 2005:Q2 - 2012:Q3 period—that is, 30 quarters—and then predicts
real GDP growth one and four quarters ahead. The forecasts are constructed using the
prediction step of the Kalman filter directly for the model with aggregate data, and, in the
case of the model with state-level data, obtaining the growth rate of aggregate real GDP from
the weighted average of the states’ real GDP growth forecasts obtained from the prediction
step of the Kalman filter for each of them. The forecast of the AR(1) process is trivial. The
forecasts are obtained from 10,000 draws each period.

Table 5 presents the average and standard deviation of the mean squared forecast errors
of the one- and four-quarter-ahead forecast errors for the three models. A few results stand
out from this exercise. First, incorporating richer autoregressive dynamics improves the
four-quarter-ahead forecast compared with the simple AR(1) model. Second, incorporating
state-level data to the UC model to decompose GDP into trend and cycle more accurately
forecasts real GDP growth out of sample. Third, the model with state-level data has a lower
variability within the mean square error than the model with aggregate data or the AR(1)
model.
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Table 5: Mean Squared Forecast Errors for Three Competing Models

Model One quarter ahead Four quarters ahead
AR(1) 0.53 (0.04) 0.57 (0.09)
Aggregate 0.57 (0.05) 0.56 (0.08)
State-level 0.49 (0.02) 0.48 (0.06)

Note: In parenthesis appears the standard deviation of the mean square forecast error.

7.3 Extensions and Sample Size Limitation

Given the importance of inflation in defining potential output, it is natural to incorporate
this variable in the system I have considered in this paper. Examples of UC models that in-
clude inflation to estimate potential output in the literature include Kuttner (1994); Roberts
(2001); Basistha and Nelson (2007); Basistha (2007). Unfortunately, there is not informa-
tion on price inflation at the state level. However, it is possible to introduce an aggregate
measure of inflation in the system in equations (7)-(18) to incorporate the information this
variable provides on potential output. Hence, I augment the aforementioned system with
the following Phillips curve equation:

πt = βπt−1 + (1− β)πe
t + κ× Aggregate GDP cyclet + ηπt ,

with β ∈ [0, 1], where πt denotes price inflation in period t, πe
t denotes expected price inflation

in period t, Aggregate GDP cyclet is the aggregate cycle as defined in equation (19), and
ηπt is an i.i.d. disturbance (see Basistha and Nelson, 2007, for more details). To estimate
the model, I incorporate information on the core personal consumption expenditures price
deflator inflation and the corresponding mean of the four-quarter ahead predictions from the
survey of professional forecasters.

Results adding inflation look very similar to the results without inflation. In particular,
the Phillips curve coefficient, κ, results in a value too close to zero for inflation to provide
information about the aggregate cycle. Blanchard, Cerutti and Summers (2015), for example,
find that the slope of the Phillips curve has substantially declined in recent years for the
United States. Hence, it does not seem that inflation could make a significant difference to
the results obtained with real GDP and unemployment rate data at the state level.

Regarding the short sample size of the state-level data along the time dimension, it
could be a concern that the trend of real GDP is estimated with just about 50 quarters, or
about 12 years. In particular, the estimates are probably not characterizing the full time
series properties of the output trend or cycle because of the particular features of the Great
Recession, which is fully included in the sample. Nevertheless, the aim of the paper is to
illustrate a novel way to decompose output into trend and cycle exploiting the cross-sectional
variation of the data. In the previous two sections, I have shown the advantages of such an
approach compared with estimates obtained using aggregate data only and the same time
span. Hence, estimating the model proposed with a longer sample could potentially provide
more precise estimates, but it would still keep the appeal compared with models that use
aggregate data.
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8 Conclusions

In this paper, I propose a model to obtain a trend-cycle decomposition of GDP using
state-level real GDP and unemployment rate data covering the 2005:Q1–2016:Q1 period.
The estimation shows that the economy reached a trough in the fourth quarter of 2009 in
which the output gap was about -7.9%, whereas the output gap is estimated to be about 0.6%
at the end of the sample in the first quarter of 2016. Across states, the recession hit states
in the rust belt especially hard, as well as Arizona, California, Florida, and Nevada. In the
first quarter of 2016, states such as Alaska, West Virginia, and Wyoming are experiencing
negative output gaps likely because of low commodity prices.

An evaluation of the results shows that incorporating cross-sectional information into the
estimation of a UC model of trend-cycle decomposition of GDP improves the precision of the
estimator of the cycle. The results also show that the model with state-level data performs
better in terms of forecasting compared with a model that only uses aggregate data.

Although introducing cross-sectional variation from many economic units can help reduce
the uncertainty around the output gap estimate, having a longer sample along the time
dimension would better help identify the output trend and, hence, the cycle. Adopting a
mixed-frequency approach can help achieve that goal using yearly state-level data. However,
the computational cost can be high as a result of the increase of latent states to accommodate
yearly along with quarterly frequencies.

One could modify the approach described in this paper to include a time-varying drift in
the trend component of GDP to a different cross-sectional system with a longer time span,
such as data on GDP at the industry level, to obtain another measure of the output gap.
One could also use information on inflation at the country level, along with real GDP and
the unemployment rate, to obtain a measure of the common cycle across those countries.
These are topics for future research.
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Appendix

A State-space Model in Matrix Form

The model in Equations (7)-(17) can be written in matrix form as the following:

zit = C(Θmi) + H(Θmi)xit +wit, wit|Ft−1 ∼ iid N(0,R(Θmi)) (20)

xit = F(Θsi)xi,t−1 +Gvit, vit|Ft−1 ∼ iid N(0,Q(Θsi)), (21)

where

zit =

[
∆yit
∆uit

]

, xit =















ct
ct−1

ct−2

ηyt
ηut
υit

υi,t−1

υi,t−2















, wit =

[
ηyit
ηuit

]

, vit =







εt
ηyt
ηut
ζit






,

C(Θmi) =

[
µi + δyi µ

0

]

,

H(Θmi) =

[
αi −αi 0 δyi 0 1 −1 0

αiθ1i αi(θ2i − θ1i) −αiθ2i 0 δui θ1i θ2i − θ1i −θ2i

]

,

R(Θvi)) =

[

σ2
ηyi

0

0 σ2
ηui

]

,

F(Θsi) =















φ1 φ2 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 ρi 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0















,

G =















1 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0















,
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Q(Θvi) =







σ2
ε 0 0 0
0 σ2

ηy 0 0
0 0 σ2

ηu 0
0 0 0 σ2

ζi






,

and

Θmi = {µ, µi, αi, θ1i, θ2i, δ
y
i , δ

u
i , σ

2
ηyi
, σ2

ηui
}

Θsi = {φ1, φ2, ρi, σ
2
e , σ

2
ηy , σ

2
ηu , σ

2
ζi
},

for i = 1, . . . , n.

B Details on the Metropolis-within-Gibbs Algorithm

Let zit, xit, Θmi, and Θsi for i = 1, 2, . . . , n, be defined as in Appendix A. Let ZT =
{z̃1, z̃2, . . . , z̃T} denote the observed data and let XT = {x̃1, x̃2, . . . , x̃T}. Here, z̃t =

{z1t, z2t, . . . , znt} and x̃t = {x1t,x2t, . . . ,xnt}. Denote Θm =
n⋃

i=1

Θmi and Θs =
n⋃

i=1

Θsi.

Partition Θsi = Θ1
si

⋃
Θ2

si

⋃
Θ3

si, where

Θ1
si = {φ1, φ2},

Θ2
si = {ρi, σ

2
ζi
},

Θ3
si = {σ2

e , σ
2
ηy , σ

2
ηu}.

Notice that the identification conditions imply that Θ3
si is not random.

Also, partition Θmi = Θ1
mi

⋃
Θ2

mi, where

Θ1
mi = {µi, αi, θ1i, θ2i, δ

y
i , δ

u
i },

Θ2
mi = {σ2

ηyi
, σ2

ηui
},

where µ has been excluded because it is fixed under the identification conditions.
The Metropolis-within-Gibbs procedure is as follows:

1. Draw XT from p(XT |ZT ,Θm,Θs) using the Durbin and Koopman (2002) simulation
smoother.

2. Draw Θ1
si from p(Θ1

si|ZT ,XT ,Θm,Θ
2
si,Θ

3
si) using the normal-inverse-gamma distribu-

tion.

3. DrawΘ1
mi from p(Θ1

mi|ZT ,XT ,Θ
2
mi,Θm(/i),Θs) for i = 1, 2, . . . , n, using the Metropolis-

Hastings algorithm, where the proposal density is given by the likelihood function of
the following nonlinear bivariate model multiplied by the prior distribution of Θ1

mi:

zit = C(Θ1
mi) + H(Θ1

mi)xit +wit, wit|Ft−1 ∼ iid N(0,R(Θ2
mi)), t = 1, 2, . . . , T.
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4. Draw Θ2
mi from p(Θ2

mi|ZT ,XT ,Θ
1
mi,Θm(/i),Θs) for i = 1, 2, . . . , n using the inverse

gamma distribution.

5. Draw Θ2
si from p(Θ2

si|ZT ,XT ,Θmi,Θ
1
si,Θ

3
si) for i = 1, 2, . . . , n, using the Metropolis-

Hastings algorithm, where the proposal density is given by the likelihood function of
the following nonlinear bivariate model multiplied by the prior distribution of Θ2

si:

zit = C(Θ1
mi) + H−(Θ1

mi)x
−
it + eit,

where

H−(Θ1
mi) =

[
αi −αi 0 δyi 0

αiθ1i αi(θ2i − θ1i) −αiθ2i 0 δui

]

,

x−
it =









ct
ct−1

ct−2

ηyt
ηut









,

eit =

[
∆υit + ηyit

θ1i∆υit + θ2i∆υi,t−1 + ηuit

]

≡

[
eyit
euit

]

,

and

var (eyit) = σ2
∆υit

+ σ2
ηyi
,

cov
(
eyit, e

y
i,t−j

)
= −

1

2
ρj−1
i (1− ρi)σ

2
∆υit

, ∀j 6= 0,

var (euit) = θ21iσ
2
∆υit

+ σ2
ηui
,

cov
(
euit, e

u
i,t−j

)
=

{

σ2
∆υit

(
θ1iθ2i −

1−ρi
2

(θ21i + ρiθ1iθ2i + θ22i)
)

if j = 1

−1
2
ρj−2
i (1− ρi)σ

2
∆υit

(ρi(θ
2
1i + θ22i) + θ1iθ2i(1 + ρ2i )) if j ≥ 2

,

cov (eyit, e
u
it) =

1

2
σ2
∆υit

(

2θ1i −
1− ρi

2
θ2i

)

,

cov
(
eyit, e

u
i,t−j

)
= −

1

2
ρj−1
i (1− ρi)σ

2
∆υit

(θ1i + ρiθ2i) , ∀j 6= 0,

cov
(
eyi,t−j , e

u
it

)
=

{

σ2
∆υit

(
θ2i −

1−ρi
2

θ1i
)

if j = 1

−1
2
ρj−2
i (1− ρi)σ

2
∆υit

(θ2i + ρiθ1i) if j ≥ 2,

with σ2
∆υit

= 2
σ2
ζi

1+ρi
.

C Obtaining the Aggregate Trend and Cycle

The objective of the estimation is to obtain the trend-cycle decomposition of aggregate
GDP, exploiting the cross-sectional variability of state-level data. Because of the nonlinearity
implicit in the aggregation of the variables and the fact that state-level GDP appears in logs
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in the specification (7)-(18), an approximation is needed. The quarterly growth rate of
aggregate real GDP is given by the following:

∆%Yt =
n∑

i=1

wit∆%Yit

≈

n∑

i=1

wit∆yit

=

n∑

i=1

wit (∆τ yit +∆cit)

=
n∑

i=1

wit (δ
y
i (µ+ ηyt ) + µi + ηyit + αi∆ct +∆υit)

≈ δ̄y(µ+ ηyt ) + µ̄+ η̄yt
︸ ︷︷ ︸

∆ GDP Trend

+ ᾱ∆ct + ῡy
t

︸ ︷︷ ︸

∆ GDP Cycle

,

where Yit is real GDP of state i, Yt is aggregate real GDP in period t, and the contribution
of of state’s i GDP to aggregate GDP is denoted by wit.

Hence, I can express the trend and cycle components of the aggregate GDP as

GDP Trend ≈ δ̄yτ yt + ξ̄yt ,

GDP Cycle ≈ ᾱct + ῡy
t ,

where

µ̄t =
n∑

i=1

wiµi,

δ̄y =

n∑

i=1

wiδ
y
i ,

η̄yt =
n∑

i=1

wiη
y
it,

ξ̄yt =

n∑

i=1

wiξ
y
it,

ᾱ =
n∑

i=1

wiαi,

ῡy
t =

n∑

i=1

wiυit,

where wi =
∑T

t=1wit/T is the sample average of each state’s contributions to aggregate
GDP. I use the smoothed estimates ct|T and υit|T to obtain the estimate of the cycle and, by
residual, the trend.
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D Derivation of the Variance Decomposition of Aggre-

gate GDP

Given that (the log of) aggregate GDP can be specified as the sum of its aggregate trend
and cycle, one can write the following:

var(∆%Yt) = var(∆ Aggregate GDP trend) + var(∆ Aggregate GDP cycle)

≈ var(δ̄y∆τt +∆ξ̄yt ) + var(ᾱ∆ct +∆ῡy
t )

= δ̄y
2
var(ηyt + η̄yt) + ᾱ2 var(∆ct +∆ῡy

t )

≈ δ̄y
2

(

1 +
n∑

i=1

w2
i σ

2
ηyi

)

+ ᾱ2

(

2(γ0 − γ1) +
n∑

i=1

w2
i σ

2
∆υit

)

,

where

γ0 =

1−φ2

1+φ2

(1− φ2
2)− φ2

1

,

γ1 =
φ1

1− φ2

γ0.
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